Application of finite mixture of negative binomial regression models with varying weight parameters for vehicle crash data analysis.

نویسندگان

  • Yajie Zou
  • Yunlong Zhang
  • Dominique Lord
چکیده

Recently, a finite mixture of negative binomial (NB) regression models has been proposed to address the unobserved heterogeneity problem in vehicle crash data. This approach can provide useful information about features of the population under study. For a standard finite mixture of regression models, previous studies have used a fixed weight parameter that is applied to the entire dataset. However, various studies suggest modeling the weight parameter as a function of the explanatory variables in the data. The objective of this study is to investigate the differences on the modeling and fitting results between the two-component finite mixture of NB regression models with fixed weight parameters (FMNB-2) and the two-component finite mixture of NB regression models with varying weight parameters (GFMNB-2), and compare the group classification from both models. To accomplish the objective of this study, the FMNB-2 and GFMNB-2 models are applied to two crash datasets. The important findings can be summarized as follows: first, the GFMNB-2 models can provide more reasonable classification results, as well as better statistical fitting performance than the FMNB-2 models; second, the GFMNB-2 models can be used to better reveal the source of dispersion observed in the crash data than the FMNB-2 models. Therefore, it is concluded that in many cases the GFMNB-2 models may be a better alternative to the FMNB-2 models for explaining the heterogeneity and the nature of the dispersion in the crash data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing Different Functional Forms of the Varying Weight Parameter for Finite Mixture of Negative Binomial Regression Models

Previously, the weight parameter of the finite mixture of regression models has been assumed to be invariant of the characteristics of the observations under study. Recently, it has been shown that the weight parameter of the finite mixture of negative binomial (NB) models can be dependent upon the attributes of the sites. Since the selection of the functional form for weight parameter has a si...

متن کامل

Finite mixture modeling for vehicle crash data with application to hotspot identification.

The application of finite mixture regression models has recently gained an interest from highway safety researchers because of its considerable potential for addressing unobserved heterogeneity. Finite mixture models assume that the observations of a sample arise from two or more unobserved components with unknown proportions. Both fixed and varying weight parameter models have been shown to be...

متن کامل

Single-Vehicle Run-Off-Road Crash Prediction Model Associated with Pavement Characteristics

This study aims to evaluate the impact of pavement physical characteristics on the frequency of single-vehicle run-off-road (ROR) crashes in two-lane separated rural highways. In order to achieve this goal and to introduce the most accurate crash prediction model (CPM), authors have tried to develop generalized linear models, including the Poisson regression (PR), negative binomial regression (...

متن کامل

Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models ‎ for Analysis of Count Data with Extra Zeros

In this paper‎, ‎we ‎propose ‎Hurdle regression models for analysing count responses with extra zeros‎. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset‎. In this example‎, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...

متن کامل

Application of finite mixture models for vehicle crash data analysis.

Developing sound or reliable statistical models for analyzing motor vehicle crashes is very important in highway safety studies. However, a significant difficulty associated with the model development is related to the fact that crash data often exhibit over-dispersion. Sources of dispersion can be varied and are usually unknown to the transportation analysts. These sources could potentially af...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accident; analysis and prevention

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2013